Homework 4.2

 $5\Sigma F$: $N = M\ddot{d}(k,t)$ $5\Sigma F$: $N = M\ddot{i}(0,t)$

 \oslash $EAdu(0,t) = m\ddot{u}(0,t)$ $\overline{\boldsymbol{d}}$ a

 $9 - E A \frac{\partial u}{\partial r}$ = multiply da

The boundary conditions

 \circledB EAdu (0,+) = mil(0,+)

 \otimes -EA du (L+) = mul (L+)

The gaverning equation: $E\underline{A}\underline{\partial u} = \underline{\partial}A\underline{\partial}U$

Separable san. $u(x,t) = U(x)T(t)$ $EU'(n) I(r) = SU(n) I(r) \longrightarrow EU''(n) = \tilde{I}(r) = -ir^2$ $g(1/x)$ $\overline{1}(t)$ 0 $U''(a) + w^2 s$ $U(a) = 0$ $V''(a) + B U(a) = 0$ $B = w \sqrt{3/E}$ \circledB $\overline{I}(t)$ $\star \omega^2 \overline{I}(t)$ = \circlearrowleft The solutions are of the form: $T(t)$ = C cos wt + S sin wt , $ll(x)$ = $a cos$ BR + b sin BR Now evoluate boundary conditions $U(x) = a$ cas $Bx + b$ sin Bx $u'(x) = -aB$ sin $Bx + bB$ as Bx $U(L) = a cosBL + b sin B$ $U(D) = q$ $U(L) = B(-\cos nBL + b\cos IBL)$ $u'(0) = bB$

 $EAdu(\Omega t) = m \frac{\partial u(\Omega t)}{\partial x}$ $\overline{\lambda^{t2}}$ $EAU(0)T(t) = \pm m(U(0)T(t)) = -mx^2U(0)T(t)$ $E A U'(0) = - m v v^2 U(0)$ $EAdultit) = - mdu (lft)$ ∂t^2 λ $EAU(L)T(t) = -mU(L)T(t) = mW^2U(L)T(f)$ $EAU(U) = mv²U(L)$ $FAu'(0) = -mv^2d(0)$ $E A_0 B = -m\omega^2 b$ $W = B \sqrt{E}$ $E A a B = - M B^2 E g$ A_0 $B = -mD^2a$ b $B = -mB^2$ $b = -mB$ a $0 = -mB2$ $\frac{1}{\sqrt{34L}}$ $b = \sqrt{B}La$

 $EAU'(L) = m\omega^2U(L)$ UL) = $a cosBL + b sin B$ $U(L) = B(-asnBL + bcos IBL)$ EA $B(-asinIBL + boxEBL) = max$ ² (acos BL + bsin BL) $EAIB(-asin IBL - IBLa cosIBL) = max^2(a cosIBL - IBLa sin IBL)$ $E A/B$ (sin BL + BL COSBL) = (-COSBL + BL SIN BL) $M W^2$ $\frac{L_7}{mv^2} = \frac{EAB}{mB^2E} = \frac{gAB}{mB^2} = \frac{gAL}{mBL} = \frac{1}{mB}$ $(sinRL + RLcoBL) = RL(-cosBL + BLSnED)$ 27bL coo BL = $((BL)^2 - 1)$ sin B Note there tan $BL = 2BL - CE$ are nultiple $(\frac{1}{2})^2 - 1$ ways to write this - all give some rools. Rigid body Motion One noot is $BL = D$ -> $IB = O$, $W = O$ The BVP \rightarrow $U''(x)$ + $w^2EU(x) = 0$

 $u(\alpha) = c\alpha + d$, $u'(\alpha) = c$

What are c and d

 $EAW(0) = -m\omega^2U(0) = 0$ $E A u'(L) = m \omega^{2} l l(L) = 0$

 $u'(0) = 0 = c$ $c = 0$ $u'(c) = 0 = cC$

 $U(x) = d$ \Rightarrow is a constant motion

 \rightarrow alart) $3, E.A$ \boldsymbol{m} \boldsymbol{m} $\overline{\mathscr{A}}$ **(D) Ay** \bullet

Rigid Body translation

Vibration

Again examine

 tan $BL = 3BL$ $(\frac{1}{2})^2 - 1$

From Matlab code

 $13/2 = 1.3065$ -7 $w_i = 1.3065$ $E_{st} = 3.6752$ -7 $a_{st} = 3.6752$ $\sqrt{E_{st}} =$ $152 = 3,6732 \rightarrow 0$
 $152 = 6,5846 \rightarrow 0$
 $153 = 6,5846$ -2 $\omega_3 = 6.5846 \sqrt{F_{36}}$

Homework 4.3

1st write the Eam $ET\frac{\partial^2 \psi}{\partial x^2} = -gA\frac{\partial^2 \psi}{\partial x^2}$ The boundary conditions can be uritten as \mathscr{C} χ = 0 \circled{b} $w(0,t) = \mathbf{I}I(0)T(t) = 0 \longrightarrow \mathbf{I}I(0)=0$ 2 $\frac{d w}{d x}(0,t) = \mathbf{I}(0)T(t) = 0$ -> $\mathbf{I}(0)=0$ Q 1= L WC USC 2F and 2M Mo^rward $\sqrt{ }$ Beam $\left(\mathcal{H}(\mathcal{L},t)\right)$ \mathcal{M} \overline{M} $M(Lft)$ $M(f+1) = FT\lambda^2w(f+1) = \lambda$ $G \supset M$:

$$
t\left(\frac{2Fa}{d\pi}\right) = \frac{2Fa \frac{u\omega}{d\pi}}{d\pi}
$$
\n
$$
t\left(\frac{2Fa}{d\pi}\right) = M\frac{d^2u}{d\pi^2}
$$

 $\bigotimes_{\partial x} E \perp \frac{\partial^2 w u}{\partial x^2} = E \perp E''(L) \cdot T(t) = 0 \implies \overline{E''(L)} = 0$ $\hat{\mathcal{D}} \quad \mathcal{EI} \frac{\partial^2 \psi(L, t)}{\partial x^3} = M \frac{\partial^2 \psi(L, t)}{\partial t^2}$ $-w^2T(t)$ $\mathcal{FIW}'''(L)T(t) = M\mathcal{I}(L)\dot{\mathcal{T}}_{t}^{t}$ $ETI\!\!I\!\!I''(L) = -MI\!\!I(L) w^2$ $\overline{\mathbb{I}^{\prime\prime\prime\prime}}(L) = -\mathbb{N}^2 \underbrace{\mathbb{M}}_{\overline{FT}} \overline{\mathbb{I}(\mathcal{L})}$ The spatial solution is $\overline{W}(a) = acosh\overline{B}a + b sinh\overline{B}a + cca\overline{B}a + clsin\overline{B}a$ where $B = \sqrt{3A_{2T}}$ zv O $W(0) = a cos(10 + b) sin(10) + cos(10 + c) cos(10)$ B $W'(0) = B(\text{asinh }O + \text{bcosh }O - \text{csinh }O + \text{dcosh }O) = O$ θ $0 =$ atc \Rightarrow $c = -a$ $\bigotimes O = \bigotimes (b + d) \longrightarrow d = -b$ あそつ Now. $\overline{\mu}$ (a) = a (cesh)Ba - cos)Ba) + b/sinh]Ba - sin Ba) $\overline{\Psi}^{\prime\prime\prime}(\tau)=\beta^2(a\coth\beta x + a\coth\beta x + b\sinh\beta x + b\sin\beta x)$ \mathbb{Z} ^N(x) = β ³ (a sinh β A - a sin β A + bcosh β A + bcas β A)

3 O=B² (accohBL + accoBL + boin bBL + boin BL) $0 = a$ (coshtbL +costBL) +b(sinhtBL +sintBL) fD $0 = B^3/a$ sinh B L - asin B L + b cost B L + b cost B L) + W² H (+ acosh RL -accs RL + bainh RSL) $w = \sqrt{\frac{ET}{st}} B^2$ and $w^2 = ET/B^4$ $\frac{w^2\mathcal{A}}{E I} = \frac{E I}{\mathcal{A}} \frac{m}{E I} \mathcal{B}^4 = \frac{A}{A} \mathcal{B}^4$ $\hat{\theta}$ $0 = \mathcal{B}^3$ (a sink \mathcal{B} L - a sin \mathcal{B} L + b cool \mathcal{B} L + b cool \mathcal{B} L) + # \mathcal{B}^4 / accoh \mathcal{B} L -acco \mathcal{B} L +bsinthu -bsin \mathcal{B} L) $0 = (a \sinh BL - a \sin BL + b \cosh BL + b \cos IBL)$ + # B (accoh BL -acco BL tbsinh to -bsin BL) multipley M B by 4 $0 = (a \sinh B1 - a \sin B1 + b \cosh B1 + b \cos B11)$ + MRBL(accoh BL -acco BL +bsinh toL -bsinBL)

Put in matrix form

coshib +cosibl) (sinhibi +sinibl $=$ \overline{O} sinhIBL s.inBL coshiBLTCOSB. BL coshiBLcosIBL ^tBL sinhiBL sina.ly lt \mathcal{L}

Simplified these colculations in the Matlab code

 $CE = det (D)$ $CE = 1 + \cos\beta L \cosh\beta L + \beta L \cos\beta L \sinh\beta L - \beta L \cosh\beta L \sinh\beta L$

From Matlab code $IBL, 1.2479$ IBC_2 4.03/1 IBL_3 7,134 BLa 10,2566 BLs 13,3878

$$
\mathbb{E}(a) = a(\cosh Ba - \cos Ba) +
$$
\n
$$
\frac{(\cosh Bb - \cos Bb)}{(\sinh Ba - \sin Bb)}
$$
\n
$$
\frac{(\cosh Bb - \sin Bb)}{(\sinh Bb - \sin Bb)}
$$


```
clc
clear
close all
fprintf([\n\langle n\rangle n\nstarting file >>' mfilename '<< at ' datestr(now,0) '\n\n']);
format long
% HW 5.3
% x= Beta*L
syms B x l a b c d M E I w rho L A BL
W = axcosh(B*x) - axcos(B*x) + bxsinh(B*x) - bxsin(B*x)Wp = diff(W, x)Wpp = diff(Wp, x)Wppp = diff(Wpp, x)% Evaluate at endpoint x = Lx = L;WL = eval(W)WppL = eval(Wpp)WpppL = eval(Wppp)E1 = WppLE2 = WpppL+w^2*L/L*M/(E*I)*WL% Math Simplification - this is a guide you need to look at the problem on
% paper to realize how to use Matlab to simlify this....
E1 = E1;E2 = subs(E2,w^2,(E*I)/(rho* A)*B^4);
E2 = expand(E2/B<sup>2</sup>);
% get rid of B*L and replace with y
E1 = \text{subs}(E1, B*L, BL);
E2 = \text{subs}(E2, B*L, BL);E2 = \text{subs}(E2/L,B, BL);
E2 = subs(E2, \{M, rho, A, L}, \{1, 1, 1, 1\});
E1 = simplify(E1/B^2);
% Write as matrix pull out coefficents
BC11 = coefficients(E1, a);BC12 = Coeffs(E1,b);BC21 = coeffs(E2,a);BC22 = coeffs(E2,b);% order from lowest to highest power- lowest is coefficient^0,
%highest is coefficent^1;
BC11 = BC11(2);
BC12 = BC12(2);
BC21 = BC21(2);
BC22 = BC22(2);BC = [BC11 BC12; BC21 BC22];CE = simplify(det(BC));
BL = linspace(0,5*pi,10^4);
CEv = eval(CE);% This CE does not have plot that we can easily identify our iniitial
```

```
% guess
% In order to get initial guess we look at places where the is a sign
% change in the CE
[Val1, loc1] = find(abs(diff(sign(CEv)))==2); \frac{1}{8} This time loc1 is indices
% Initial Guesses
x0v = BL(loc1);options_all=[];
% set your length L
L=1;
for i = 1:5x0 = x0v(i);fprintf([\n\langle n \rangle n \rangle n \rangle >> Mode' num2str(i) '<< \langle n \rangle n']);
     % Fzero
    [xval, fval, exitflag] = fzero(@CEfunction,x0,options_all,CE);
    beta(L) = xval;This is Beta*L
    beta(i) = beta(i)/L; % This is Beta
end
%Solve for Modeshapes
%solve fofr a constant
bsol=solve(E1==0,b)
%plug into W(x)Wmode= simplify(subs(W,b,bsol));
pretty(Wmode)
%Plot mode shapes
x =linspace(0,L,100);
figure
for i = 1:5B = beta(i);BL = betaL(i);a = 1;WmodeP = eval(Wmode);
    Wmax = max(abs(Wmodel));
     WmodeP = WmodeP/Wmax;
     subplot(5,1,i)
     line(x,WmodeP,'linewidth',2,'color','k')
     xlabel('x')
    ylabel(['W_',num2str(i), '(x)'])
    title([\cdot \text{beta } L = \cdot, \text{ num2str(BL)}])
     box on
end
function [F] = CEfunction(BL, CE)% Pass the symbolic characteristic equation into a function
```
 $F = eval(CE);$

end

Homework 4,4 $\frac{1}{7}$ $\frac{1}{7}$ t t t t t t t T T T T T T T T t t

 $\frac{mZ}{dx}$ $\frac{F\omega w}{dx^2}$ $\frac{F\omega w}{dx^2}$ $\frac{F\omega w}{dx^2}$ f_{max} $\frac{E \int \frac{\partial^2 W}{\partial x^4} + C \frac{\partial W}{\partial t} + K \omega + S \frac{A \partial^2 W}{\partial t^2}}{\partial t^2} = C$ Caulot $Boundedary$ Conditions: $ELSU(0,t) = O$, $ELSU(1,t) = C$ $ET \frac{\partial^2 w(t, t)}{\partial \sigma^2} = 0 \frac{ET \frac{\partial^2 w(t, t)}{\partial \sigma^2} = 0}$ Rearnange governing equation $\frac{\mathbb{E} I}{\frac{\partial^2 w}{\partial x^2} + c \frac{\partial w}{\partial t} + \kappa w + \frac{\partial A}{\partial t^2} = 0}$

 $ETW^4(x)T(t) + CW(x)\overline{T}(t) + KW(x)T(t) + yAW(x)\overline{T}(t) = D$

 $ETW^4(x)T(t) + KW(x)T(t) = -gAW(x)\dot{T}(t) -cW(x)\dot{T}(t)$ divide by 3AW(n) Tlt) $-\left(\frac{ET}{34} \frac{W^4(x)}{W(x)} + \frac{K}{J4}\right) = \frac{\ddot{T}_{19} + c \dot{T}_{14}}{\dot{T}_{17}} = -20$ $-\underline{\mathbb{E}I}$ $\frac{W''(x)}{W(x)} - K + w^2 = 0$ $\frac{W''(x) + \left(-\frac{1}{2}Aw^2 + k}{\sqrt{2}L}\right)W(x) = 0$ $\begin{array}{cc} \mathcal{O} & \mathcal{W}^{\mathit{u}}(\mathit{x}) \end{array} - \begin{pmatrix} \mathcal{A} \mathit{u} \mathcal{I}^{\mathit{z}} & -\mathcal{L} \\ \mathcal{I} \mathcal{I} \end{pmatrix} \mathcal{W}(\mathit{x}) = 0$ $\hat{\mathcal{B}}$ $\hat{T}(t)$ + \mathcal{L} $\hat{T}(t)$ + $\mathcal{N}^2 \hat{T}(t)$ = \bigcirc Rename: $1B^4 = 8Aw^2 - k$
EI EI $25w = 464$ $\oslash M^4$ - IB^4 $N = O$ $0\ddot{\uparrow}+23\pi\,\mathcal{T}+\varpi^{2}\,\mathcal{T}=0$

 $T(t) = e^{-5\omega t} (C\cos \omega t + S\sin \omega t)$ Soln of @ $wd = w\sqrt{1-5^2}$ Not needed for correct onswer $W(x) = acosh\!Bx + b sinh\!Bx + c cos\!Bx + d sin\!Bx$ $W'(x) = ab \sinh iBx + bB \cosh Bx - cB \sin Bx + dB \cos Bx$ $W''(a) = aB^2 \cosh Bx + bB^2 \sinh Bx - cB^2 \cos Bx - dB^2 \sin Bx$ $w'''(a) = aB^3$ sinh $B\chi + bB^3$ cash $B\chi + cB^3$ sin $B\chi - dB^3$ cos $B\chi$ With Boundary conclifions $W''(0) = 0$, $W''(0) = 0$, $W''(L) = 0$, $W'''(L) = 0$ $2a = C$ if $B \neq 0$ $W''(0) = \alpha B^2 - cB^2 = 0$ - $N''(0) = b/B^3 - dB^3 = 0$ - \rightarrow b=d if B=D Now, $W(x) = a$ (cost $BX + cosBx$) + b (sinh $Bx + sinBx$) $W''(n) = a B^2 (cosh Bx - cos Bx) + b B^2 (sinh Bx - sin Bx)$ $W''(x) = aB^3(\sinh Bx + \sin Bx) + bB^2(\cosh Bx - \cos Bx)$

Foolate at $x = L$ $W''(L) = aB^2(coshB1 - cosB2) + bB^2(sinhB1 - sinB2) = 0$ $a=-\left(\sinh\sqrt{B}L-\sin\sqrt{B}L\right)b$ $(coshIBL - cosIBL)$ Plug into last BC $W''(L) = aB^3(\sinh tBL + \sinh BL) + bB^3(\cosh BL - \cos BL) = O$ $= -B\sinh B$ L $-$ Sin B L) (sinhBL +sin B L) b $cosh\mathcal{B}l - cos\mathcal{B}l$ $+$ B^3 (cosh BL -co $>$ BL) (cosh BL -co $>$ BL) b = C , $\cosh\mathcal{B}$ -cos \mathcal{B} $=$ B^3 (-sinhBL + sinBL) (sinhBL + sinBL) b $\cosh B$ $\cosh B$ + B (cash B i - cos B i) (cosh B i - cos B i) $=$ 0, $cosh$ $BL - cosBL$ = IB^3 /2 - 2 cost BL cos BL)b = 0 $cosh Bt - cosh Bt$

The not zero mode shapes are given by

 $W(x) = \left(\frac{-b\sinh\beta L - \sin\beta L}{\cosh\beta L - \cos\beta L}\right) \left(\cosh\beta L + \cos\beta L\right) + b\sinh\beta x + \sin\beta x$

 $W_3 = \left((4, 75)^4 \frac{ET}{A^2} + \frac{K}{3A} \right)$

 $W_{4} = \left(\frac{(1.9552)^{4} E T}{3 A L^{4}} + \frac{K}{3 A} \right)$

 $\omega_3 = \sqrt{(4.75)^4 \frac{ET}{3.4L^4}} + \frac{L}{3.4L^4}$ $w_q = \left(\frac{7.852}{3} + k \right)$ $W_q(\eta)$ $W(A)$ 3 \rightarrow $\overline{\mathscr{S}}$ Ď Ď

Flerard Modes

Note \circ \mathbb{R} = 0

 \sim zero
struin mode $w_{1/2} = \sqrt{\frac{k}{8}}A$

behaves as a riggd beam

How do we find $BL=0$ modes? Go back to BVP $W'''(\alpha)$ - $B^2W(\alpha) = 0$ $W''(x) = O$ is the new governing mode shape equation $w_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$ i= 0, 1 Since we have 2 Rb modes $W_0(N) = 4_0 \chi^5$ tho χ^2 + Co χ + Co $W_1(d) = q_1 x^3 + b_1 x + c_1 x + d_1$ Now $W''_i(a) = 6a_i\chi + 2bi$ for $i = 1, 2$ $W''_i(\alpha) = 6a_i$ $W''_j(0) = 0 = 2bi$ bi=0
 $W'''_j(0) = 0 = 2bi$ bi=0 I can't use \rightarrow $W_i''(t) = W_i'''(t) = 0$ $W''(0) = 0 = 64i$ since they are automatically satisfied $W_i(x) = C_i x + d_i$ Now for wold) that is a pure translation $w_i(x) = c1$ just a constant that is scaled by initial condition

Now for w, In) that is rotation about CG $W_{2}(x) = C_{1}x + U_{1}$ $W_1(4) = 0 = C_1 4 \pm 14 \implies d = -442$ $W_1(x) = C_1(x - U_2)$

 $w = \sqrt{\frac{k}{g}}$ $w_i = \sqrt{\frac{1}{2}}$ 7gA $\frac{1}{2}$ $W, \nmid \nmid$ $\overline{\delta}$ $\overline{\mathcal{O}}$

Rigid Bady Modes