
ME 563 - Fall 2020 
Homework Problem 6.3 
 
A forcing F (t)= fosinΩt acts at the end of the thin, homogeneous bar of the two-DOF system 
shown below. The wheel can be modeled as a cylinder with mass m, radius R and rolls without 
slipping.  The response of the system is to be described by the coordinates x(t) and θ (t). Let g /L 
= 2k /m. 
 
 

 
a) Derive the particular solutions xp (t) and θp (t) for the system. 
 
b) At what values of the temporal frequency Ω does resonance occur in the system? 
 
c) Show that the “shape” of the response is that of the first mode when excited at the first natural 
frequency, and that the shape is that of the second mode when excited at the second natural 
frequency.- 
 
d) At what values (if any) of the temporal frequency Ω do anti-resonances occur for xp (t)? For θp 
(t)? 
 
e) Make plots for the amplitudes of xp (t) and θp (t) vs. the temporal frequency Ω. 
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Now back to forcedproblem using complex Exponential
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ME 563 - Fall 2020 
Homework Problem 7.1 
 
 
The undamped, single-DOF system above is given 

a base excitation of y(t). The base 

motion y(t) is T-periodic in time, as shown above. 

a) Determine the Fourier series of y(t). 
b) Use Matlab to make a plot of y(t)vs. t/T for 
your Fourier series. Use a sufficient 
number of terms in your Fourier series when 
making the plot to insure that the series has 
converged. 
 
c) Derive the equation of motion for the system. 
 
d) Determine the particular solution for the 

response, xP (t). 
 

e) Use Matlab to make a plot of xP (t) vs. t/T for 
your Fourier series corresponding 
to T = 0.87 Tn , where Tn = 2π (m / k)1/2 is the natural period of oscillation for the system. Use the 

same number of terms in your response xP (t) as you did in your Fourier series for y(t)above. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y 0,87



nyce
A

II

Tiz 114 714 Iz t

L S
T

We can write yet as a piecewise function

0 1722 EL TH

g µ

ttA 74 to Tanfassaqimygentric

4A TA i OE t C Tq

O The EEE 42

Write as a Fourier series

get yo t.IE ycjcosjr c ysjs.in JIE

Calculate the Fourier coefficients
172

go YT grade
172

yo HT et A de t 4Sof4A e A de

245 4 4,1ft A de

Effy
94

3 f 2,1 Ae

o
EfzA tA 212AE A

I 1 I 4



gig 24 yet cos Cjre de since yet is
symmetric

44folkgeckosCjce de

14
44got 4ft e t A cosjrt.de

714
4ft 4 1 cosine de

O

4
o

4 4 cosine de t Jotkcos re de

4 f 4 Gta sinj re a
cosine

4

Yasinj ne
o

where A 241T

gA I cos I

yes 24 getsin Cj del de since yet is symmetric

0

The total solution 9th Afly z
I cosity cos

see Matlab Code



Write EON
2

F 42mn12 U 42kCox y

Fk Fix c 21 0
a 2x

mix c Kox key
mix tax KA Ly z

I cosity cos

x'twnx wn ACIyt.ITztg l cosjTye cosljr 4
with 2 211 1

The particular solution is

4pct Xo IuNc Ct
Now evaluating oxo L

If cWn'sNo Wring No Aq
0

Now evaluating Kc Ct B Score
ix cytainaccj Nora Yj l cosjydcoscjr.ttz

Gri B.gosftE wneB.co rcj
Wn2A EfzC4ja Cl cosjTy cos

B Wrf 4A I costj
Wi grey F

Recall 1 211 1 Wr 21T ITN



Bj I
l hiya FAT Ija l cosity

Bj I
l co g

FAT Ija cosity

The total solution

4pct AE t 4ft 41 e Yj l cos's 05h54



11/22/20 8:09 PM /Users/jgibert/Dropbox/ME .../Matlab7_1.m 1 of 2

clc
clear all
close all
 
syms T
 
N  = 100; %Number of Fourier Terms
 
 
T  = 1;
A  = 2;
F  = [ A 0   0   0     A  0     0 ];
tp  = [ 0 T/4 T/2 3*T/4 T 5*T/4 3/2*T  ];
 
%%
% Fourier Series
 
Nv = [4 5 10 50 ];
t  = linspace(0,3/2*T,1000);
for k = 1: length(Nv)
    N = Nv(k);
    y0    = A/4;
    yt    = y0;
    ysum  = 0;
    Omega = 2*pi/T;
    Omegav = 0;
    ycj    = 0;
    for j= 1:N
        ycj(j)      = 4*A/pi^2*(1/j^2)*(1-cos(j*pi/2));
        ysum        = ysum + ycj(j)*cos(2*pi*j*t/T);
    end
    yt = yt+ ysum;
    subplot(2,2,k)
    line(tp,F,'linewidth',2,'color','r')
    line(t,yt,'linewidth',1,'color','k')
 
    xlabel('t/T')
    ylabel('y(t)')
    title(['N = ', num2str(N), ' Fouriers Series'])
    axis([-inf inf -0.2*A 1.2*A])
    box on
end
%%
% Particular Solution
t  = linspace(0,5*T,1000);
N     = 50;
x0    = A/4;
xsum  = 0;
Omega = 2*pi/T;
xcj   = 0;
T     = 1;
Tn    = 0.87*T;  
for j= 1:N
    xcj(j) = (4*A/pi^2)*(1/j^2)*(1-cos(j*pi/2))*(1/(1 - (j*Tn/T)^2));
    xsum   = xsum + xcj(j)*cos(2*pi*j*t/T);
end
xt = x0 + xsum;
figure
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line(t/T,xt/A,'linewidth',1,'color','k')
xlabel('t/T')
ylabel('x(t)')
title(['T_n = ' ,num2str(Tn), ' T with N =',num2str(N), ' Fourier Terms'])
box on
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ME 563 - Fall 2020 
Homework Problem 7.2 
 

 
Consider a damped, single-DOF system with an equation of motion of: 

 
It was shown in lecture that the convolution integral for the undamped case ( ζ = 0 ) with 
zero initial conditions  

 
that the convolution integral could be written as: 

 
where the impulse response function was given by: 

 
a) Show that the convolution integral solution for zero initial conditions for the 
critically-damped case ( ζ = 1) can be written in the same general form: 

 
What is the impulse response function h(t −τ ) in this case? Feel free to start your 
derivation using the general form of the convolution integral found in the 

lecturebook in terms of the fundamental solutions u(t) and v(t). 
b) Use the convolution integral derived above in a) to determine the response of the 
system to the forcing shown above, where T = 0.50 Tn , where Tn = 2π (m / k)1/2 is the natural 
period of oscillation for the system, 
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