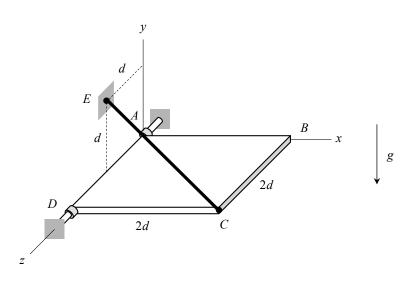
Given: A plate is supported by a hinge joint along edge AD and by cable CE. Cable CE carries a tension of F_{CE} as a result of the weight of the plate. Let \vec{F}_{CE} represent the force on the plate due to cable CE: $\vec{F}_{CE} = F_{CE} \left(\cos \alpha_1 \hat{i} + \cos \alpha_2 \hat{j} + \cos \alpha_3 \hat{k} \right)$.

Find: Add a sketch of the three direction angles for \vec{F}_{CE} to the diagram below.

Regarding the direction angle α_1 , circle the correct response below:


- $\alpha_1 = 0$
- $0 < \alpha_1 < 90^\circ$
- $\alpha_1 = 90^{\circ}$
- $90^{\circ} < \alpha_1 < 180^{\circ}$
- $\alpha_1 = 180^{\circ}$

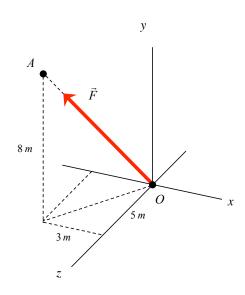
Regarding the direction angle α_2 , circle the correct response below:

- $\alpha_2 = 0$
- $0 < \alpha_2 < 90^{\circ}$
- $\alpha_2 = 90^{\circ}$
- $90^{\circ} < \alpha_2 < 180^{\circ}$
- $\alpha_2 = 180^{\circ}$

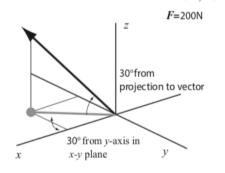
Regarding the direction angle α_3 , circle the correct response below:

- $\alpha_3 = 0$
- $0 < \alpha_3 < 90^{\circ}$
- $\alpha_3 = 90^{\circ}$
- $90^{\circ} < \alpha_3 < 180^{\circ}$
- $\alpha_3 = 180^{\circ}$

Given: Two forces $\vec{F_1}$ and $\vec{F_2}$ are written in terms of a set of Cartesian components as: $\vec{F_1} = (a\hat{i} - 2b\hat{j})$ kN and $\vec{F_2} = (4b\hat{i} + 2a\hat{j} - 10\hat{k})$ kN, where *a* and *b* are parameters having unknown numerical values. Let θ represent the angle between these two force vectors.

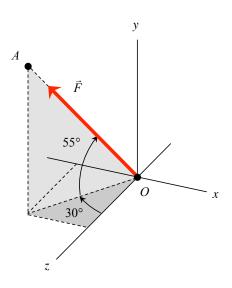

Find:

Regarding the angle θ , circle the correct response below:

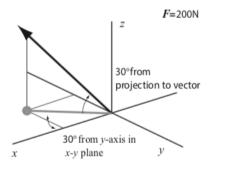

- $\theta = 0$
- $0 < \theta < 90^{\circ}$
- $\theta = 90^{\circ}$
- $90^{\circ} < \theta < 180^{\circ}$
- $\theta = 180^{\circ}$

Given: A force \vec{F} acting in the direction shown.

Find: Determine the three direction angles θ_x , θ_y and θ_z for \vec{F} .



Find the coordinate direction angles $\theta_x, \theta_y, \theta_z$ for the vector shown.



Given: A force \vec{F} acting in the direction shown.

Find: Determine the three direction angles θ_x , θ_y and θ_z for \vec{F} .

Find the coordinate direction angles θ_x , θ_y , θ_z for the vector shown.

