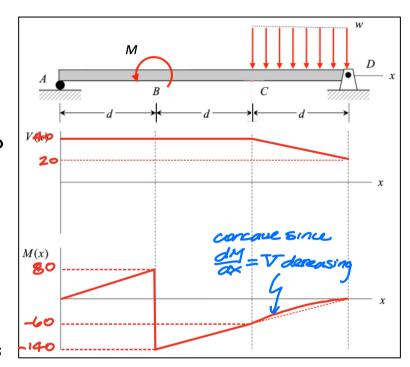

ME 270 - Summer 2024 - Prague


Given: Simply-supported beam with the line loading w and concentrated couple loading M shown.

Find: Construct the shear force and bending moment diagrams for this beam. Provide the details of your analysis including: the analysis for external reactions, the shear force/bending moment calculations, and the checks on your answers.

For this problem, use the following parameters: M = 220 kip-m, w = 10 kips/ft and d = 2 ft.

•
$$\Sigma F_{y} = A_{y} + D_{y} - Wd = 0$$

• $A_{y} = Wd - D_{y}$
= $(i0)(2) - (-20) = 40 kips$

$$V(0) = Ay = 40 \text{ hips}$$
 $V(4) = V(0) + \int p(k) dx = 40 \text{ hips}$
 $V(6) = V(4) + \int p(6) dx$
 $= 40 + (10) = 20 \text{ hips}$
 $V(6) = V(6) = -20 \text{ hips}$
 $V(6) = -20 \text{ hips}$

Since there is no beam at x=6, it is not meaningful to calculate $V(G^+)$ and $M(G^+)$. At the right boundary, check shear force and bending moment at x=6.

$$M(0) = 0$$
 (roller support)
 $M(2^{-}) = M(0) + \int_{0}^{2} V(x) dx$
 $= (40)(2) = (80) \text{ Rip.ft}$
 $M(2^{+}) = M(2^{-}) - M$
 $= (80 - 220) = -(40) \text{ Rip.ft}$
 $M(4) = M(2^{+}) + (40)(2) = -(60) \text{ Rip.ft}$
 $M(6) = M(4) + (60)(2) + \frac{1}{2}(20)(2)$
 $= 0$
Note: $M(6) = 0$ (pin support) V
(checks)