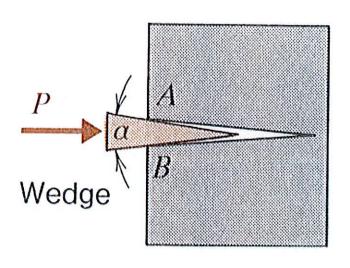
WEDGES

Learning Objectives

- 1). To determine the *force* required to insert and/or remove a wedge.
- 2). To determine whether a wedge is *self-locking*.
- 3). To determine the *minimum coefficient of friction* necessary for a wedge to be self-locking.
- 4). To determine the minimum force necessary to hold a *non-self-locking* wedge in place.

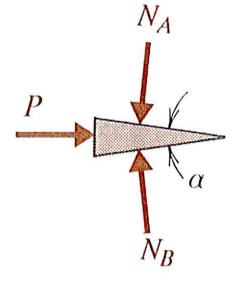
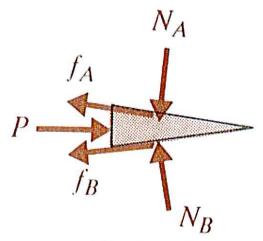

Definitions

Wedge: a simple machine designed to affect a small change in the position of a system. Wedges often experience large normal and friction forces.

Self-Locking Wedge: a wedge in which the friction forces large enough to prevent it from being squeezed out.

Remarks

- 1). Friction forces always **opposes** the direction of impending motion.
- 2). Evaluating the condition of impending motion <u>out</u> is the only way to determine if a wedge is self-locking.
- 3). $F = F_s = \mu_s N$ for impending motion.
- 4). The weight of the wedge is often neglected because of the large normal and frictional forces acting on the wedge.
- 5). Wedges typically have half angles (β) of about 6°, so that μ between the wood and wedge need be only about 0.1 to be self-locking.

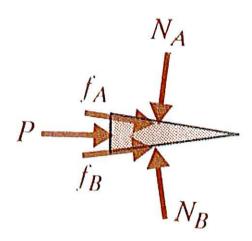

FIGURE 8a

FIGURE 8b

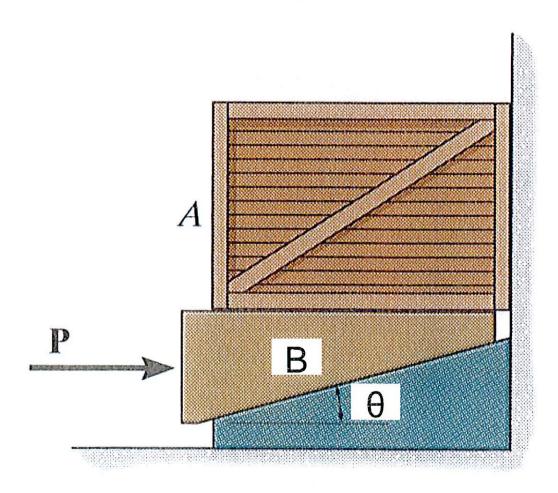
Wedge being forced in

FIGURE 9a

Wedge being squeezed out

FIGURE 9b

Wedges

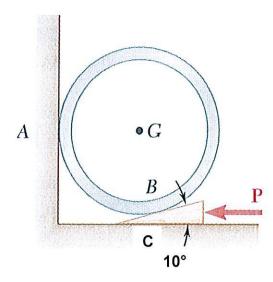

Example 1

Given:

A 2400N crate (A) is to be moved using wedge as shown (θ = 20°). The coefficient of friction between the wedge and the crate between the wedge and the base (C) is μ_S = 0.3.

Find:

- a) Determine the $\underline{\text{minimum}}$ force P_{MIN} required to raise the crate.
- b) Determine the **maximum** force P_{MAX} required to lower the crate.
- c) Is the wedge self-locking? Justify your answer using your results from parts (a) and (b).


Wedges

Example 2

Given: A 1m diameter circular pipe is raised by a wedge with a 10° slope using force P. The pipe has a weight of 981N, and the coefficient of static friction at surface A is $\mu_s=0.6$, at surface B it is $\mu_s=0.2$, and at surface C it is $\mu_s=0.3$.

Find:

- a) Qualitatively determine the possible motions that could occur.
- b) Using the proper assumptions, determine the minimum value of Force P required to initiate motion.
- c) Describe the nature of the impending motion.
- d) Can you tell if the wedge self-locking?

Friction: Wedges Group Quiz 1

Group	#:_		Group Members: (Present Only)	1) _	
Date: _		Period:	•	2) _	
				3) _	
				4) _	
Given	co su	200 kg load is positioned on a pefficient of friction is μ = 0.1 fourfaces. Assume the mass of the ble.	or all contacting	ļ-	200 kg
		Determine the magnitude and necessary to raise the load. Determine the magnitude and necessary to lower the load.			15°

Solution:

c) Is the wedge self-locking?