Identifying Zero-force Members

Typical Cases:

こらてい:

 $l_{AB}^2 = Ay$

Given: The truss shown is in static equilibrium.

Find: For the truss,

a) Identify all zero-force members by inspection.

b) State anything else you can determine about the truss by inspection.

- **Given:** The truss shown is in static equilibrium.
- **Find:** For the truss,
 - a) Identify all zero-force members by inspection.
 - b) State anything else you can determine about the truss by inspection.

Given: The truss shown is in static equilibrium.

Find: For the truss,

a) Identify all zero-force members by inspection.

b) State anything else you can determine about the truss by inspection.

Given: The truss shown is in static equilibrium.

Find: For the truss,

- a) Identify all zero-force members by inspection.
- b) State anything else you can determine about the truss by inspection.

- **Given:** The truss shown is in static equilibrium.
- **Find:** For the truss,
 - a) Identify all zero-force members by inspection.
 - b) State anything else you can determine about the truss by inspection.

Zero-Force Members

Example 6

Find:

- a) Identify all zero-force members in the truss by inspection.
- b) Using your equations of static equilibrium, prove the members HI and IG are zero-force members.
- c) Indicate any other members whose load can be identified or is equivalent to another member by inspection.

Zero-Force Members Group Quiz 1

- d) If an additional downward load were applied at joint D, would the force carried in
 - member DI change or stay the same
 - member DJ change or stay the same, and
 - member DK change or stay the same.

Solution:

ME 270 - Basic Mechanics I - Group Quiz

(b) Joint I $\Sigma F_{y} = 0 = F_{DT} \cos \theta$ ĩŋ . - For-D Sect ion a-a Gy-100 10016 Gy-350lb = 391 16 $ZM_{T}=0=-6(100)+12(350)+5(F_{DE})$ DE = -72016 = 72016 C ZERO-FORCE MEMBERS= O=FBL = FDK = FDT=+ (\mathcal{O}) Also note: FAB=FBC ; FAL=FJL ; FCK=FJK; Fer=Frei Fer=Frei Fer=Frei Fer=Frei Fer=30016 ; FEH=10016.