FORCE COUPLES

Learning Objectives

1). To determine a resultant torque of a system of force couples.
2). To determine an equivalent force-couple of a system of forces and moments.
3). To do an engineering estimate of this quantity.

Definition

Force Couple: a pair of forces which are (i) equal in magnitude, (ii) parallel and (iii) opposite in direction.

$$
|\overline{\mathrm{M}}|=|\overline{\mathrm{F}}| \mathrm{d}
$$

where $\mathrm{d}=$ perpendicular distance between the lines of action of the forces forming the couple.

$$
\overline{\mathrm{M}}=\overline{\mathrm{r}}_{\mathrm{AB}} \times \overline{\mathrm{F}}
$$

where $\overline{\mathrm{r}}_{\mathrm{AB}}=$ any position vector between the lines of action of the forces forming the couple.

Comments

1). Force couples cause no net force (i.e., $\sum \overline{\mathrm{F}}=0$).
2). The moment due to a force couple is the same regardless of the point the moment is summed about. (This not true of a non-couple).

Force Couples
 Example 1

Given: Angled bar ABCDE is loaded with several force couples as shown.
Find:
a) Determine the magnitude and direction of each force couple pair.
b) Determine the equivalent moment and direction of all of the force couples combined.

Solution:

Force Couples

Example 2

Given: The rod and plate system is loaded by several force couples.

Find:

a) Determine the equivalent magnitude and direction of each force couple.

Solution:

EQUIVALENT SYSTEMS

Learning Objectives

1). To determine an equivalent force-couple of a system of forces and moments.
2). To do an engineering estimate of this quantity.

Definition

Equivalent Systems: two force-couple systems which exert i) the same net force on a body and ii) the same net moment (or torque).

Force Condition: $\quad\left(\sum \overline{\mathrm{F}}\right)_{1}=\left(\sum \overline{\mathrm{F}}\right)_{2}$
Moment Condition: $\left(\sum \mathrm{M}_{\mathrm{P}}\right)_{1}=\left(\sum \mathrm{M}_{\mathrm{P}}\right)_{2}$

Note: Selection of point P is arbitrary. Thus, choose a point that will simplify the moment equation.

Force-Couple Equivalent

Force: $\quad \overline{\mathrm{R}}=\sum \overline{\mathrm{F}}=\overline{\mathrm{F}_{1}}+\overline{\mathrm{F}_{2}}+\overline{\mathrm{F}}_{3}+\ldots$

Moment:

$$
\begin{aligned}
& \overline{\mathrm{M}_{\mathrm{rP}}}=\sum \overline{\mathrm{M}_{\mathrm{p}}}=\left(\overline{\mathrm{r}}_{1} \times \overline{\mathrm{F}}_{1}\right)+\ldots+\left(\overline{\mathrm{r}}_{2} \times \overline{\mathrm{F}}_{2}\right)+\left(\overline{\mathrm{r}}_{3}+\overline{\mathrm{F}}_{3}\right)+\ldots+\overline{\mathrm{C}}_{1}+\overline{\mathrm{C}}_{2}+\ldots \\
&=\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{F}}}\left(\overline{\mathrm{r}_{\mathrm{i}}} \times \overline{\mathrm{F}_{\mathrm{i}}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{c}}} \overline{\mathrm{C}_{\mathrm{i}}}
\end{aligned}
$$

\therefore Equivalent Force-Couple System: $\overline{\mathrm{F}_{\mathrm{R}}}, \overline{\mathrm{M}_{\mathrm{R}_{\mathrm{O}}}}$ (about point P).

Equivalent Force-Couple Systems Example 1

Given: Below are six system of forces and couples acting on bar AB.

Find:

Solution:

Equivalent Force-Couple Systems Example 2

Given: Curved bar AB is loaded with a 100 lb force and a 1500 lb -in couple as shown.

Find:

a) Estimate the equivalent force-couple system at base A.
b) Calculate the equivalent force-couple system at base A.

Solution:

Equivalent Force-Couple Systems Example 3

Given: Traffic light pole BCDE is loaded with a 200 N traffic light at E and partially supported by cable BA. (DE = 3m)

Find:
a) Determine the equivalent force-couple system at base C.

Solution:

Equivalent Force-Couple Systems Example 4

Given: Force-couple system I shown below left is made up of four forces F_{1}, F_{2}, F_{3}, and F acting at points A, B, C, and D, respectively, in addition to a couple M. Force F and couple M are known to have magnitudes of 200 lb and $900 \mathrm{ft}-\mathrm{lb}$, respectively.

Force-couple system II shown below right is made up of a force R at B and a couple M_{B}, with R and M_{B}, having known magnitudes of 300 lb and 600 ft lb , respectively.

Find: If System II is to be the equivalent force-couple of System I, what are the magnitudes of the forces F_{1}, F_{2}, and F_{3} ?

Solution:

Equivalent Force-Couple Systems Group Quiz

Group \#: \qquad Group Members: 1) \qquad (Present Only)
Date: \qquad Period: \qquad 2) \qquad
3) \qquad
4) \qquad
Given: A pipe assembly has a force system shown.

Find:

a) Find a force-couple resultant at point $A\left(F_{r}, M_{r A}\right)$ which is equivalent to the force system shown.
b) If the $50 \mathrm{~N}-\mathrm{m}$ couple were shifted down pipe CA, what effect would this have on the equivalent force-couple system at point A?

Solution:

Problem 2/138

