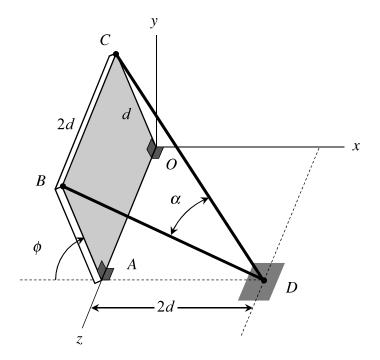

Homework H3.A

Given: Cable forces \vec{F}_1 and \vec{F}_2 act concurrently on the ring shown. Let $\vec{R} = \vec{F}_1 + \vec{F}_2$ represent the resultant of these two cable forces, and let \vec{R}_u represent the vector projection of \vec{R} onto the direction defined by the unit vector \vec{u} shown.

Find:

- a) Determine the vector \vec{R}_u by directly projecting \vec{R} onto \vec{u} .
- b) Determine the vector \vec{R}_u by individually projecting \vec{F}_1 and \vec{F}_2 onto \vec{u} and adding together these vector projections.

Use the following parameter value in your analysis: $F_1 = 4$ kN, $F_2 = 5$ kN, $\phi = 30^{\circ}$ and $\alpha = 40^{\circ}$.


Homework H3.B

Given: Cables BD and CD are attached to corners B and C, respectively, of a hinged door and exert forces of \vec{F}_{BD} and \vec{F}_{CD} , respectively, on the door due to their tensions. The tensions in cables BD and CD are known to be T and T, respectively. The door hinges are locked so that these cable loads on the door result from pre-tensioning.

Find:

- a) Write out the force vectors \vec{F}_{BD} and \vec{F}_{CD} in terms of their Cartesian components.
- b) Determine the vector projection of \vec{F}_{BD} onto cable CD.
- c) Determine the vector projection of \vec{F}_{CD} onto cable BD.
- d) Determine the angle α that exists between cables BD and CD.

Use the following parameter value in your analysis: $\phi = 40^{\circ}$.

