Homework H6.A

Given: A force \vec{F} acts at end C of the bent bar shown below.

Find:

- a) Determine the moment arm d of \vec{F} about point A.
- b) Using the moment arm d found above, determine the moment about point A, \overrightarrow{M}_A , due to the force \overrightarrow{F} . Write your answer as a vector in terms of, at most: b, L, θ and F.
- c) Using the cross product $\vec{r}_{AC} \times \vec{F}$, determine the moment about point A, \vec{M}_A , due to the force \vec{F} . Write your answer as a vector in terms of, at most: b, L, θ and F. Compare this answer with what you found in part b) above.

Homework H6.B

Given: A pre-tensioned cable DE is attached between ground E and end D of the pipe structure shown. The tension in cable DE is T_{DE} . Let \vec{F}_{DE} represent the force vector on the structure at D due to the cable.

Find:

- a) Write out \vec{F}_{DE} in terms of its Cartesian components.
- b) Determine the moment about point A due to \vec{F}_{DE} using $\vec{r}_{AD} \times \vec{F}_{DE}$.
- c) Determine the moment about point A due to \vec{F}_{DE} using $\vec{r}_{AE} \times \vec{F}_{DE}$. Compare your answer with what you found in part b) above.
- d) Determine the moment about point C due to \vec{F}_{DE} .

Write your answers as vectors and in terms of, at most: T_{DE} and d.

