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Intro remarks: Coupling and Copulas

Coupling and Copula are two important concepts of
probability theory.
Their origins can be traced back to the fifties (coupling:
thirties) of the last century, but interest in them waxed and
waned for a long time.
Very loosely, coupling means the construction of the joint
distribution of two or more (previously unrelated) random
variables,
whereas copulas are functions that join multivariate
distribution functions to their one-dimensional margins.
Copulas have recently become a very active area in statistics.
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Preliminaries: Equality-in-distribution

I Let X be a random variable; X̂ is a copy or a representation
of X if it has the same distribution as X , denoted by

X̂ D= X
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First definition: Coupling

I A coupling of a collection of random variables Xi , i ∈ I (I
some index set), is a family of random variables

(X̂i : i ∈ I) such that X̂i
D= Xi , i ∈ I.

Note: The collection Xi need not be defined on a common
probability space and may not have a joint distribution; the
family (X̂i : i ∈ I) has joint distribution such that the
marginals are equal to the distributions of the Xi variables.
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Example 1: Coupling two Bernoulli random variables

Let Xp be a Bernoulli random variable, i.e.,

P(Xp = 1) = p and P(Xp = 0) = 1− p.

Assume p < q; we can couple Xp and Xq as follows:
Let U be a uniform random variable on [0, 1], i.e., for
0 ≤ a < b ≤ 1,

P(a < U ≤ b) = b − a.

Define

X̂p =
{

1 if 0 < U ≤ p;
0 if p < U ≤ 1

; X̂q =
{

1 if 0 < U ≤ q;
0 if q < U ≤ 1.

Then U serves as a common source of randomness for both X̂p

and X̂q. Moreover, X̂p
D= Xp and X̂q

D= Xq.
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Example 1 (cont’ed): Coupling two Bernoulli random
variables

I The joint distribution of (X̂p, X̂q) is
X̂q

0 1
0 1− q q − p 1− pX̂p 1 0 p p

1− q q 1

I

I and cov(X̂p, X̂q) = p(1− q).
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Preliminaries: The Quantile Function

Let X be a real-valued random variable with distribution
function F (x) which is continuous from the right. Then, the
quantile function (or, generalized inverse) Q(u) of X is
defined as

Q(u) ≡ F−1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1.
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Example 2: Quantile Coupling

Let X be a random variable with distribution function F , that is,

P(X ≤ x) = F (x), x ∈ <.

Let U be a uniform random variable on [0, 1]. Then, for random
variable X̂ = F−1(U),

P(X̂ ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), x ∈ <,

that is, X̂ is a copy of X : X̂ D= X .

Thus, letting F run over the class of all distribution functions
(using the same U), yields a coupling of all differently distributed
random variables, the quantile coupling.
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Theory of Copulas

10 / 75



Copula: Example

Let (X ,Y ) be a pair of random variables with joint
distribution function F (x , y) and marginal distributions FX (x)
and FY (y).
To each pair of real numbers (x , y) we can associate three
numbers: FX (x), FY (y), and F (x , y). Note that each of these
numbers lies in the interval [0, 1].
In other words, each pair (x , y) of real numbers leads to a
point (FX (x),FY (y)) in the unit square [0, 1]× [0, 1], and this
ordered pair in turn corresponds to a number F (x , y) in [0, 1].

(x , y) 7→ (FX (x),FY (y)) 7→ F (x , y) = C(FX (x),FY (y))

<× < → [0, 1]× [0, 1] C→ [0, 1]

This is a copula C .
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Defining the copula

Definition
An n-copula is an n-variate distribution function with univariate
margins uniformly distributed on [0, 1].

I There are many equivalent definitions of copula.
I One of them, in the case n = 2, is the following:

Definition
A function C : [0, 1]× [0, 1]→ [0, 1] is a 2−copula if, and only if,
it satisfies

1. C(0, t) = C(t, 0) = 0, for every t ∈ [0, 1] (groundedness);
2. C(1, t) = C(t, 1) = t, for every t ∈ [0, 1] (uniform marginals);
3. for all a1, a2, b1, b2 ∈ [0, 1], with a1 ≤ b1 and a2 ≤ b2,

(∗) C(a1, a2)− C(a1, b2)− C(b1, a2) + C(b1, b2) ≥ 0.

(∗) is called 2-increasing, supermodularity.
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Sklar’s Theorem
Theorem (Sklar’s Theorem, 1959)

Let F (x1, . . . , xn) be an n-variate distribution function with
margins F1(x1), . . . ,Fn(xn); then there exists an n-copula
C : [0, 1]n −→ [0, 1] that satisfies

F (x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)), (x1, . . . xn) ∈ <n.

If all univariate margins F1, . . . ,Fn are continuous, then the
copula is unique.
If F−1

1 , . . . ,F−1
n are the quantile functions of the margins,

then for any (u1, . . . , un) ∈ [0, 1]n

C(u1, . . . , un) = F (F−1
1 (u1), . . . ,F−1

n (un)).

Note: The copula can be considered ‘independent‘ of the
univariate margins.
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How to prove that a function is a copula

I Find a suitable probabilistic model (i.e., random vector) whose
distribution function is concentrated on [0, 1]n and has
uniform marginals; or,

I prove that properties (1) groundedness, (2) uniform marginals,
and (3) n-increasing (supermodularity) are satisfied.
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Properties of copulas

Sklar’s theorem shows that copulas remain invariant under strictly
increasing transformations of the underlying random variables.

It is possible to construct a wide range of multivariate distributions
by choosing the marginal distributions and a suitable copula.
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Example 1: Gumbel’s bivariate exponential copula

Let Hθ be the joint distribution function given by

Hθ(x , y) =
{

1− e−x − e−y + e−(x+y+θxy) if x ≥ 0, y ≥ 0;
0, otherwise;

where θ is a parameter in [0, 1].
Then the marginals are exponentials, with quantile functions
F−1(u) = − ln(1− u) and G−1(v) = − ln(1− v) for u, v ∈ [0, 1].
The corresponding copula is

Cθ(u, v) = u + v − 1 + (1− u)(1− v)e−θ ln(1−u) ln(1−v).
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Example 2: Bivariate extreme value distribution

Let X and Y be random variables with a joint distribution given by

Hθ(x , y) = exp[−(e−θx + e−θy )1/θ]

for all x , y ∈ <̄, where θ ≥ 1.

The corresponding Gumbel-Hougaard copula is given by

Cθ(u, v) = exp
(
−
[
(− ln u)θ + (− ln v)θ

]1/θ)
.
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Plotting Gumbel-Hougaard copula with different marginals
UniformDistribution@80, 1<D
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Plotting Gumbel-Hougaard copula with different marginals
NormalDistribution@0, 1D
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Plotting Gumbel-Hougaard copula with different marginals
GumbelDistribution@1, 2D
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Fréchet-Hoeffding bounds and copulas

These will be central topics in the applications presented here.
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Fréchet-Hoeffding copulas

Let C(u, v) be a 2-copula; then, for u, v ∈ [0, 1],

W (u, v) ≡ max{u + v − 1, 0} ≤ C(u, v) ≤ min{u, v} ≡ M(u, v),

and M and W are also copulas, the upper and lower
Fréchet-Hoeffding copula.

The dependence properties translate into:
For W , P(U + V = 1) = 1,
and for M, P(U = V ) = 1.
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Copulas and order statistics: diagonal section
Maximum

Let U1,U2, . . . ,Un be random variables defined on the same
prob. space., having uniform distribution on (0, 1) and C as
their distribution function; then, for every t ∈ [0, 1]

P(max{U1,U2, . . . ,Un}) ≤ t) = P

 n⋂
j=1
{Uj ≤ t}


= C(t, t, . . . , t)

δC (t) := C(t, t, . . . , t) is called the diagonal section of the
copula C .
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Copulas and order statistics: diagonal section
Minimum

For n = 2, it follows

P(min{U,V }) ≤ t) = P(U ≤ t) + P(V ≤ t)− P(U ≤ t ∩ V ≤ t)
= 2t − δC (t).

Thus, determining a bivariate copula C with prescribed
diagonal section δ is equivalent to determining a random
vector (U,V ) such that (U,V ) ∼ C and the marginal
distribution functions of the order statistics of (U,V ) are
known.
Note: the diagonal of a copula does not uniquely determine
the underlying copula.
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Application to parallel systems

We loosely define
Parallel system: “Existence of one or more multivariate
distributions on possibly different probability spaces, where
random variables relate to certain behavioral or neural
processes”.
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Copulas for neural and behavioral parallel systems

(1) Multisensory integration: reaction times
(2) Multisensory integration: spike numbers (impulse numbers)
(3) Response inhibition: stop signal paradigm

In (1) and (2), we present a new measure of multisensory
integration that unifies behavioral and neural data.
In (3), we modify a classic model of inhibitory behavior in a
way to solve a paradox between behavioral and neural data.
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The multisensory paradigm (behavioral version)

I Unimodal condition: a stimulus of a single modality (visual,
auditory, tactile) is presented and the participant is asked to
respond (by button press or eye movement) as quickly as
possible upon detecting the stimulus (reaction time, RT,
task).

I Bi- or trimodal condition: stimuli from two or three modalities
are presented (nearly) simultaneously and the participant is
asked to respond as quickly as possible upon detecting a
stimulus of any modality (redundant signals task)
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The multisensory paradigm (behavioral version)

I We refer to V,A, T as the unimodal context where visual,
auditory, or tactile stimuli are presented, resp. Simlarly, VA
denotes a bimodal (visual-auditory) context, etc.

I For each stimulus, or stimulus combination, we observe
samples from a random variable representing the reaction time
measured in any given trial. Let FV (t),FA(t),FVA(t), . . .
denote the distribution functions of reaction time in a
unimodal visual, auditory, or a visual-auditory context, etc.
when a specific stimulus (combination) is presented.
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Existence of couplings

I Each context V,A,VA refers to a different event space
(σ-algebra), so, from an empirical point of view, no couplings
between the reaction time random variables in these different
conditions necessarily exist.

I A common assumption, often not stated explicitly, is that
there exists a coupling between visual and auditory RT, for
example, such that the margins of the bivariate distribution
HVA are equal to FV and FA.

I Given a coupling exists, an assumption on how HVA is related
to the margins of FV and FA, is required (⇒ copula ?).

I In principle, this could be tested empirically. However, the
margins of HVA are not observable, only the distribution
function of RTs in the bimodal context, FVA, is.
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The (possibly non-independent) race model

The model studied most often is the (possibly non-independent)
race model : Let V and A be the random reaction times in
unimodal conditions V and A, with distribution functions FV (t)
and FA(t), resp.
I Assume bimodal RT is determined by the “winner” of the race

between the modalities:
FVA(t) = P(V ≤ t or A ≤ t)

I Then
FVA(t) = FV (t) + FA(t)− HVA(t, t),

with HVA(t, t) = P(V ≤ t and A ≤ t).
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The (possibly non-independent) race model
I from the Fréchet bounds,

max{FV (t) + FA(t)− 1, 0} ≤ HVA(t, t) ≤ min{FV (t),FA(t)}.

I Inserting and rearranging yields

max{FV (t),FA(t)} ≤ FVA(t) ≤ min{FV (t)+FA(t), 1}, t ≥ 0,

(‘race model inequality’, Miller 1982)
I The upper bound corresponds to maximal negative

dependence between V and A, the lower bound to maximal
positive dependence.

I Empirical violation of the upper bound (occurring only for
small enough t) is interpreted as evidence against the race
mechanism (“bimodal RT faster than predictable from
unimodal conditions”).
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Race Model Inequality Test

Gondan & Minakata 2016

The grey area between the upper
bound FA + FV and the bimodal
RT distribution FVA is taken as a
measure of the amount of
violation of the race model
inequality. This area is the
(sample estimate of the)
expected value of min(A,V ):

E(−)[min(V ,A)],

under maximal negative
dependence between V and A
(Colonius & Diederich PsyRev
2006). Estimation is
straightforward.
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Crossmodal response enhancement (CRE)

I We will use maximal negative probability summation to define
a new measure of crossmodal response enhancemen for RT.

I Response enhancement in RT means “faster average
responses”:

CRERT = min{E[RTV ],E[RTA]} − E[RTVA]
min{E[RTV ],E[RTA] × 100
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The new measure of CRE in RT

1. Replace the traditional

CRERT = min{E[RTV ],E[RTA]} − E[RTVA]
min{E[RTV ],E[RTA] × 100

by

CRERT
(−) = E(−)[min(V ,A)]− E[RTVA]

E(−)[min(V ,A)]
× 100

2. CRERT
(−) ≤ CRERT
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The multisensory paradigm (neural version)
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CRE at the level of a single neuron
Response strength: the absolute number of impulses
(spikes) registered within in a fixed time interval after
stimulus presentation

Stein et al., Nat Rev Neurosci 2014

CRE = CMVA −max{UMV ,UMA}
max{UMV ,UMA}

× 100,

CRE = 123[%]
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CRE at the level of a single neuron

I this measure is a very useful tool, but it is purely descriptive
I no theoretical foundation in terms of the possible operations

SC neurons may perform
=⇒ Being responsive to multiple sensory modalities does not
guarantee that a neuron has actually engaged in integrating
its multiple sensory inputs rather than simply responding to
the most salient stimulus.
Multisensory computations performed by SC neurons still not
fully understood
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CRE for single neuron data

I Task: Develop a measure of crossmodal enhancement for
single neuron data, in analogy to CRERT

(−).
I NV , NA, and NVA denote random number of impulses emitted

by a neuron, following unisensory (visual, auditory) and
cross-modal stimulation. The traditional index is:

CREMAX = E[NVA]−max{E[NV ],E[NA]}
max{E[NV ],E[NA]} × 100.
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Towards a new index of CRE in neural data

GV (m) = PV (NV > m) and GA(m) = PA(NA > m),
m = 0, 1, . . . the (survivor) distribution functions of NV and
NA.
In analogy to the race model inequality, from the
Fréchet-Hoeffding bounds,

min{GV (m),GA(m)} ≤ P(max{NV ,NA} > m)
≤ max{0,GV (m) + GA(m)− 1}

for m = 0, 1, . . .
Again, upper and lower bounds are distribution functions
(survival fcts) for random variable max{NV ,NA} !
Summing over m and applying Jensen’ s inequality, we obtain
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Proposition on Coupling NV and NA

Proposition
For any coupling of the univariate response random variables NV
and NA with expected value E[max{NV ,NA}],

max{E[NV ],E[NA]} ≤ E[max{NV ,NA}] ≤ E(−)[max{NV ,NA}],

where E(−)[max{NV ,NA}] is the expected value under maximal
negative dependence between NV and NA.
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A a new index of CRE in neural data

Replace the traditional index

CREMAX = E[NVA]−max{E[NV ],E[NA]}
max{E[NV ],E[NA]} × 100.

by

CRE(−)
MAX = E[NVA]− E(−)[max{NV ,NA}]

E(−)[max{NV ,NA}]
× 100.

CRE(−)
MAX compares the observed bimodal response ENVA

with the largest bimodal response achievable by coupling the
unisensory responses via negative stochastic dependence.
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An Important Consequence

I CRE(−)
MAX ≤ CREMAX ⇒

Thus, a neuron labeled as “multisensory” under CREMAX
may lose that property under CRE(−)

MAX.
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Illustrative Example: Single SC Neuron Data

* Data set from Mark Wallace (Vanderbilt U.):
84 sessions, with 15 trials each, from 3 superior colliculus
neurons (cat)

(Results in Colonius & Diederich, Scientific Reports, 2017.)

43 / 75



Intermediate summary

I We suggest to replace the traditional multisensory index
CREMAX by the new one, CRE(−)

MAX.
I The new one has a theoretical foundation: it measures the

degree by which a neuron’s observed multisensory response
surpasses the level obtainable by optimally combining the
unisensory responses (assuming that the neuron simply reacts
to the more salient modality in any given cross-modal trial).

I CRE(−)
MAX is easy to compute and does not require any

specific assumption about the distribution of the spikes.
I It is in straightforward analogy to a measure well-established

in the domain of reaction times (“race model inequality”).
I It is sensitive to the variability of the data set.
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Copulas for neural and behavioral parallel systems

(1) Multisensory integration: reaction times
(2) Multisensory integration: spike numbers (impulse numbers)
(3) Response inhibition: stop signal paradigm

In (1) and (2), we present a new measure of multisensory
integration that unifies behavioral and neural data.
In (3), we modify a classic model of inhibitory behavior in a
way to solve a paradox between behavioral and neural data.
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Response inhibition: stop signal paradigm
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Stop signal paradigm

- Subjects are
instructed to make a
response as quickly as
possible to a go signal
(no-stop-signal trial)

- On a minority of
trials, a stop signal is
presented and
subjects have to
inhibit the previously
planned response
(stop-signal trial)
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Stop signal paradigm: inhibition functions

- Inhibition functions of
three subjects (Logan &
Cowan, 1984)

- The inhibition function is
determined by stop-signal
delay, but it also depends
strongly on RT in the go
task; the probability of
responding given a stop
signal is lower the longer
the go RT
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RT distributions with and without stop signal

- Observed response time
distributions for no-stop
-signal trials and
signal-respond trials with
stop-signal delays (SSDs)
of 153, 241, and 329 ms
(from Logan et al 2014):

- RTsignal-respond < RTgo

- faster for shorter
stop-signal delays than for
longer ones.
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The general race model
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The general race model (1)

I Distinguish two different experimental conditions termed
context GO, where only a go signal is presented, and context
STOP, where a stop signal is presented in addition.

I In STOP, let Tgo and Tstop denote the random processing
time for the go and the stop signal, respectively, with
(unobservable !) bivariate distribution function

H(s, t) = Pr(Tgo ≤ s,Tstop ≤ t),

for all s, t ≥ 0.
I The marginal distributions of H(s, t) are denoted as

Fgo(s) = Pr(Tgo ≤ s,Tstop <∞)
Fstop(t) = Pr(Tgo <∞,Tstop ≤ t).
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The general race model (2)

NOTE: The distribution of Tgo could be different in context GO
and in context STOP. However, the general race model rules this
out by adding the important

Context invariance assumption The distribution of go
signal processing time Tgo is the same in context GO and
context STOP.
Race assumption Probability of a response despite stop
signal at delay td :

pr (td ) = Pr(Tgo < Tstop + td ) (1)

Assume H(s, t) = Pr(Tgo ≤ s,Tstop ≤ t) is absolutely
continuous, so that density functions for the marginals exist,
denoted as fgo(s) and fstop(t).
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The general race model (3)

The RT distribution of responses given a stop signal at delay
td (signal-response distribution) is

Fsr (t | td ) = Pr(Tgo ≤ t |Tgo < Tstop + td )

Goal: Estimate stop-signal processing distribution Fstop(t)
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The independent race model
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The independent race model (1)

Logan & Cown (1984) suggested the independent race model
assuming stochastic independence between Tgo and Tstop:

Stochastic independence: for all s, t

H(s, t) = Pr(Tgo ≤ s) Pr(Tstop ≤ t) = Fgo(s) Fstop(t)

Then

pr (td ) = Pr(Tgo < Tstop + td )

=
∫ ∞

0
fgo(t) [1− Fstop(t − td )] dt. (2)
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The independent race model (2)

Density of the signal-response time distribution Fsr (t|td ), for
t > td

fsr (t | td ) = fgo(t) [1− Fstop(t − td )]/pr (td ).

Solving for Fstop(t − td ),

Fstop(t − td ) = 1− fsr (t | td )pr (td )
fgo(t) , (3)

known as the “Colonius” method (Colonius 1990).
Unfortunately obtaining reliable estimates for the stop signal
distribution using Equation (3) requires unrealistically large
numbers of observations in practice (Band et al. 2003;
Matzke et al. 2013).
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The independent race model (3): Integration method

Figure
from Schall et al. 2017

Assume constant stop signal
processing time: Tstop = SSRT

pr (td ) =
∫ SSRT+td

0
fgo(t)dt

- Because estimates of both pr (td )
and fgo(t) are available, this
allows estimation of stop signal
processing mean SSRT.
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The mean method

pr (td ) = Pr(Tgo < Tstop + td )
= Pr(Tgo − Tstop < td )
= Pr(Tgo − Tstop < td ) ≡ Pr(Td < td )

⇒ E[Td ] = E[Tgo]− E[Tstop]

Independent race model:

Var[Td ] = Var[Tgo] + Var[Tstop]

⇒ Var[Tstop] = Var[Tgo]− Var[Td ]
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The paradox

Studying saccade
countermanding in
monkeys, Hanes and
colleagues (Hanes &
Schall 1995, Hanes et al.
1998) recorded from
frontal and supplem. eye
fields. They found neurons
involved in gaze-shifting
and gaze-holding that
modulate on stop-signal
trials, just before SSRT
when the monkey stopped
successfully. (Figure from
Schall & Logan 2017 )
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The paradox
I The paradox: How can interacting circuits of mutually

inhibitory gaze-holding and gaze-shifting neurons instantiate
STOP and GO processes with independent finishing times?

I Proposed solution: interactive race model (Boucher et al.
2007):
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The paradox

I The paradox: How can interacting circuits of mutually
inhibitory gaze-holding and gaze-shifting neurons instantiate
STOP and GO processes with independent finishing times?

I Proposed solution: interactive race model (Boucher et al.
2007), blocked-input model (Logan et al. 2015)

I stochastic differential equations; no longer non-parametric.
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The race model with perfect negative
dependence
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The Fréchet-Hoeffding bounds

I For any bivariate distribution function

H(s, t) = Pr(Tgo ≤ s,Tstop ≤ t)

the following inequality holds:

H−(s, t) ≤ H(s, t)

with H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}

I H−(s, t) is a distribution function. Specifically, it correspond
to perfect negative dependence between Tgo and Tstop.
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Perfect negative dependence

What does it mean?

H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}. (4)

for all s, t (s, t ≥ 0).
The marginal distributions of H−(s, t) are the same as before,
that is, Fgo(s) and Fstop(t).
Note that this perfect negative stochastic dependence (PND)
model is parameter-free just like the IND race model, that is,
we do not assume any specific parametric distribution.
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Perfect negative dependence: the key property

Fstop(Tstop) = 1− Fgo(Tgo) (5)

holds “almost surely”, that is, with probability 1.
I Thus, for any Fgo percentile we immediately obtain the

corresponding Fstop percentile as complementary probability
and vice versa, which expresses perfect negative dependence
between Tgo and Tstop.

I The relation in Equation [5] is also interpretable as “Tstop is
(almost surely) a decreasing function of Tgo”.

I It constitutes the most direct implementation of the notion of
“mutual inhibition” observed in neural data: any increase of
inhibitory activity (speed-up of Tstop) elicits a corresponding
decrease in “go” activity (slow-down of Tgo) and vice versa.
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Predictions from perfect negative dependence

Do we have to throw away all measures obtained using the
independent model, like estimates of mean Tstop ≡ SSRT?
No ! Because the (marginal) distribution of Tstop are the same
under independence and perfect negative dependence. Thus

E[Tstop | IND] = E[Tstop |PND]

I But for the variance,

Var[Tstop] = Var[Td ]− Var[Tgo] + 2 Cov[Tgo,Tstop]. (6)
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Can we test for PND ?
“Fan effect”:
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Can we test for PND ?

dashed =
IND
line = PND
*Tgo,Tstop:
exponential
distribution
*simulation:
copBasic
package in R
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Is there a paradox?
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Is there a paradox?
I We need to distinguish different levels of description,

behavioral vs. neural. The race model (whether independent
or dependent) does not describe the neural processes
underlying stopping behavior.

I “Linking propositions” are theories about how the specific,
observable aspects of the neuroscientific data should be
related to specific, but often latent, aspects of the formal
models.

I However: “Linking propositions” are affected by the
behavioral model and can go astray: “In short, the
interaction of the STOP with the GO unit must be late and
potent – late to preserve the independence of the GO and
STOP processes through SSRT and potent because it must
be late.” (Schall et al. 2017)

I Therefore, it DOES matter what kind of dependency is
assumed in the race model.
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Summary and Conclusions

I Behavioral and neural models have distinct levels of
description based on different types of data, and either level
can lead to insights into the cognitive process.

I The goal of “closing the gap” may be approached by “mutual
inspiration”.

I Linking hypotheses are an important part of closing the gap,
but their usefulness depends on how good the models are (in
both areas).
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