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Contextuality à la Spekkens1

1R. W. Spekkens, Contextuality for preparations, transformations, and
unsharp measurements, Phys. Rev. A 71, 052108 (2005).



Schematic of a prepare-and-measure scenario and its two
descriptions



A prepare-and-measure scenario

  

Measurement

Source



Two descriptions: Operational vs. Ontological

I Operational:
p(m, s|M, S) ∈ [0, 1], (1)

where p(m, s|M,S) = p(m|M, S , s)p(s|S).

I Ontological:

p(m, s|M,S) =
∑
λ∈Λ

ξ(m|M, λ)µ(λ, s|S), (2)

where µ(λ, s|S) = µ(λ|S , s)p(s|S).



Features of the operational theory necessary to define
noncontextuality



Operational equivalences

Preparations

I Source events:
[s|S ] ' [s ′|S ′], i.e.,

p(m, s|M,S) = p(m, s ′|M, S ′) ∀[m|M]. (3)

I Source settings:
[>|S ] ' [>|S ′], i.e.,∑

s∈VS

p(m, s|M,S) =
∑

s′∈VS′

p(m, s ′|M,S ′) ∀[m|M]. (4)



Measurements
Measurement events are operationally equivalent

([m|M] ' [m′|M ′]) if no source event can distinguish them, i.e.,

∀[s|S ] : p(m, s|M,S) = p(m′, s|M ′,S), (5)

e.g., when the same projector appears in two different
measurement bases.



What is a ‘context’?
Any distinction between operationally equivalent procedures.

  

Difference 
of context

Difference 
of context



Examples

Preparation contexts: Different realizations of a given quantum
state, e.g., different convex decompositions,

I
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2
|−〉〈−|,

or different purifications,

ρA = TrB |ψ〉〈ψ|AB = TrC |φ〉〈φ|AC , etc.



Measurement contexts: Different realizations of a given POVM
or a POVM element, e.g., same projector appearing in different

measurement bases, joint measurability contexts for a given
POVM, or even different ways of implementing a fair coin flip

measurement.2

2Mazurek et. al., Nature Communications 7:11780 (2016).



Noncontextuality



Noncontextuality: identity of indiscernibles

If there exists no operational way to distinguish two things, then
they must be physically identical.3

I Measurement noncontextuality:

[m|M] ' [m′|M ′]⇒ ξ(m|M, λ) = ξ(m′|M ′, λ) ∀λ ∈ Λ

I Preparation noncontextuality:

[s|S ] ' [s ′|S ′]⇒ µ(λ, s|S) = µ(λ, s ′|S ′) ∀λ ∈ Λ,

[>|S ] ' [>|S ′]⇒ µ(λ|S) = µ(λ|S ′) ∀λ ∈ Λ.

3Equivalently: if two things are non-identical, or physically distinct, then
there must exist an operational way to distinguish them.



Kochen-Specker (KS) noncontextuality

KS-noncontextuality
⇔ Measurement noncontextuality and Outcome determinism 4

4Applied to measurement contexts of the type arising from joint
measurability. Outcome determinism: for any [m|M],
ξ(m|M, λ) ∈ {0, 1} ∀λ ∈ Λ.



Kochen-Specker theorem: logical proof

Cabello et al., Physics Letters A 212, 183 (1996)



Kochen-Specker theorem: statistical proof

Klyachko et al., Phys. Rev. Lett. 101, 020403 (2008)



Kochen-Specker contextuality à la CSW 5

5Cabello et al., PRL 112, 040401 (2014).



Contextuality scenario, Γ
A hypergraph Γ where the nodes of the hypergraph v ∈ V (Γ)
denote measurement outcomes and hyperedges denote
measurements e ∈ E (Γ) ⊆ 2V (Γ) such that

⋃
e∈E(Γ) = V (Γ).6

  

Figure: Γ for KCBS. 7

6We will further assume that no hyperedge is a strict subset of another in Γ,
following Aćın et al (AFLS), Comm. Math. Phys. 334(2), 533-628 (2015)

7Klyachko et al., Phys. Rev. Lett. 101, 020403 (2008).



Orthogonality graph of Γ, i.e., O(Γ)

Vertices of O(Γ) are given by V (O(Γ)) ≡ V (Γ), and the edges of
O(Γ) are given by

E (O(Γ)) ≡ {{v , v ′}|v , v ′ ∈ e for some e ∈ E (Γ)}.



Probabilistic models on Γ

A probabilistic model on Γ is given by p : V (Γ)→ [0, 1] such that∑
v∈e p(v) = 1 for all e ∈ E (Γ). The set of all probabilistic models

on Γ is denoted G(Γ). Relevant subsets of G(Γ):

I KS-noncontextual, C(Γ): a convex mixture of
p : V (Γ)→ {0, 1},

∑
v∈e p(v) = 1 ∀e ∈ E (Γ).

I Consistently exclusive, CE1(Γ): p : V (Γ)→ [0, 1], such that∑
v∈c p(v) ≤ 1 for all cliques c in O(Γ).

Clearly,
C(Γ) ⊆ CE1(Γ) ⊆ G(Γ).



Exclusivity graph, G : a subgraph of O(Γ)

  

R([s|S ]) ≡
∑

v∈V (G)

wvp(v |S , s), (6)

where wv > 0 for all v ∈ V (G ) and p(v |S , s) is a probabilistic
model induced by source event [s|S ] on measurements events in Γ.



CSW bounds

R([s|S ]) ≡
∑

v∈V (G)

wvp(v |S , s)

KS
≤ α(G ,w)
Q
≤ θ(G ,w)

E1

≤ α∗(G ,w),

KCBS 8 : wv = 1 for all v ∈ V (G ),
α = 2, θ =

√
5, and α∗ = 5/2.

8Klyachko et al., Phys. Rev. Lett. 101, 020403 (2008).



Missing ingredients?

I Measurement noncontextuality alone yields a trivial upper
bound α∗(G ,w). (Remember: no outcome determinism.)

I Need to invoke preparation noncontextuality.

I We do this next.



Hypergraph-theoretic ingredients



The contextuality scenario ΓG

Turn maximal cliques in G into hyperedges and add an extra
(“nondetection”) vertex to each hyperedge.

  

We can now take p(v |S , s) to be a probabilistic model on ΓG rather
than the full scenario Γ and retain the same probabilities on G .



Weighted max-predictability, β(ΓG , q)

β(ΓG , q) ≡ max
p∈G(ΓG )|ind

∑
e∈E(ΓG )

qeζ(Me , p), (7)

where qe ≥ 0 for all e ∈ E (ΓG ),
∑

e∈E(ΓG ) qe = 1, and

ζ(Me , p) ≡ max
v∈e

p(v) (8)

is the maximum probability assigned to a vertex in e ∈ E (ΓG ) by
an indeterministic probabilistic model p ∈ G(ΓG ).



Source hypergraph

  



    



Source-measurement correlations: Corr

Corr ≡
∑

e∈E(ΓG )

qe
∑
me ,se

δme ,sep(me , se |Me ,Se), (9)

where {qe}e∈E(ΓG ) is a probability distribution, i.e., qe ≥ 0 for all
e ∈ E (ΓG ) and

∑
e∈E(ΓG ) qe = 1.9

9Such that β(ΓG , q) < 1 holds.



Beyond CSW:
Hypergraph framework for Spekkens contextuality



General form of the noise-robust noncontextuality
inequality: KS-colourable case 10,11

R([se∗ = 0|Se∗ ])
NC
≤ α(G ,w) +

α∗(G ,w)− α(G ,w)

p∗

1− Corr

1− β(ΓG , q)
.

Here, p∗ ≡ p(se∗ = 0|Se∗) = p(v0
e∗) and all the measurement

events in G are evaluated on the source event [se∗ = 0|Se∗ ] to
compute R([se∗ = 0|Se∗ ]).

For the KCBS scenario: α(G ,w) = 2, α∗(G ,w) = 5/2, and
β(ΓG , q) = 1/2. We then have

R ≤ 2 +
1− Corr

p∗

10R. Kunjwal, arXiv:1709.01098 [quant-ph] (2017).
11R. Kunjwal and R. W. Spekkens, Phys. Rev. A 97, 052110 (2018).



Scope of this generalization of CSW

The framework presented so far applies to KS-colourable
contextuality scenarios where statistical proofs of the KS theorem
apply. In particular, it covers contextuality scenarios Γ (hence also
ΓG ) such that

I C(Γ) 6= ∅,

I CE1(Γ) = G(Γ).



Hypergraph framework for KS-uncolourable scenarios

I For Γ such that C(Γ) = ∅, we obtain a framework
(cf. arXiv:1805.02083) based entirely on the hypergraph
invariant β(ΓG , q).

I It’s basic ingredients are still the contextuality scenario Γ and
the corresponding source events hypergraph.
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Recall

β(ΓG , q) ≡ max
p∈G(ΓG )|ind

∑
e∈E(ΓG )

qeζ(Me , p), (10)

where qe ≥ 0 for all e ∈ E (ΓG ),
∑

e∈E(ΓG ) qe = 1, and

ζ(Me , p) ≡ max
v∈e

p(v) (11)

is the maximum probability assigned to a vertex in e ∈ E (ΓG ) by
an indeterministic probabilistic model p ∈ G(ΓG ).



Recall

Corr ≡
∑

e∈E(Γ)

qe
∑
me ,se

δme ,sep(me , se |Me ,Se), (12)

where {qe}e∈E(Γ) is a probability distribution, i.e., qe ≥ 0 for all
e ∈ E (ΓG ) and

∑
e∈E(Γ) qe = 1.12

12Such that β(Γ, q) < 1 holds.



General form of the noise-robust noncontextuality
inequality: KS-uncolourable case

Corr ≤ β(Γ, q). (13)



Example: 18 ray

Corr ≤ 5

6
, (14)

where qei = 1
9 for all i ∈ [9].
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Properties of β(Γ, q) from structure of the
KS-uncolourable hypergraph

I See arXiv:1805.02083 for a study of β(Γ, q) for various
KS-uncolourable hypergraphs.

I It presents a framework for identifying subsets of contexts
(i.e., the supports of {qe}e∈E(Γ)) which admit a nontrivial
bound on Corr given by β(Γ, q).

I It applies the framework to a family of KS-uncolourable
hypergraphs: those where each vertex appears in two
hyperedges.



Comparision of KS vs. Spekkens

 

 Traditional Bell-KS 
approaches 

Spekkens' approach 

Type of context 1) ONB contexts 
2) Compatibility 

contexts 

Includes more types of 
contexts, for both preps and 
mmts. 

Assumptions MNC and OD (or at least 
Factorizability) 

MNC and PNC (and resp. 
convex mixtures etc.) 

Quantity of interest Mmt-mmt correlations for a 
fixed input state  

Also includes source-mmt 
correlations 

Type of inequalities Constraints on mmt-mmt 
corr from the classical 
marginal problem 

More refined approach: 
tradeoff b/w mmt-mmt corr 
and source-mmt corr 

KS-uncolourability proofs Logical contradiction, no 
ineqs on mmt-mmt corr 
needed. 

Robust inequality bounding 
source-mmt corr. No 
mmt-mmt corr needed. 

 



Takeaway

1. We have obtained two complementary hypergraph-based
frameworks for KS-colourable and KS-uncolourable scenarios.

2. Together, they complete the project of turning KS-type proofs
of contextuality into noise-robust noncontextuality inequalities
applicable to noisy measurements and preparations.

3. Open questions:
I applications of these frameworks to quantum information?
I hypergraph-theoretic properties of β(Γ, q) vis-à-vis the

structure of Γ, possible relevance to information theory?
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