Purdue sensors measure uric acid levels better than other noninvasive methods

Faster, more accurate measurement of uric acid levels could lead to better diagnosis, therapy and prognosis of several physiological and psychological conditions

Sensor gloves.

Researchers in Purdue University’s College of Engineering have created new noninvasive, wearable sensors that monitor levels of uric acid in human sweat. A paper about the research has been published in the peer-reviewed journal Nano Energy. (Purdue Research Foundation photo/Jennifer Mayberry)

WEST LAFAYETTE, Ind. —

Researchers in Purdue University’s College of Engineering have invented and are developing noninvasive medical devices to make the monitoring and treatment of certain physiological and psychological conditions timelier and more precise.

Wenzhuo Wu, the Ravi and Eleanor Talwar Rising Star Associate Professor of Industrial Engineering, said noninvasive, repeated monitoring of uric acid (UA) levels in human sweat over long periods of time could enable the unprecedented diagnosis, therapy and prognosis of several conditions including anxiety and hypertension.

“My team and I have created new noninvasive, wearable sensors that monitor levels of uric acid in human sweat,” Wu said. “These patent-pending sensors, called EPICS, have higher sensitivity and better wearability and can be made from less expensive materials than traditional sensors that measure uric acid levels.”

A paper about the research has been published in the peer-reviewed journal Nano Energy.

The impact of uric acid

Wu said UA is made in the human body as an end product of purine metabolism. It also acts as a kind of alarm that triggers inflammation as an immune response.

“Variation in UA concentration could indicate physiological diseases such as gout, hyperuricemia and hypertension, as well as psychological conditions such as anxiety and depression,” Wu said. “Recent studies report the physiological diseases associated with abnormal UA levels affect approximately 1%-4% of the world’s population and cost more than $20 billion in annual medical expenditures. The psychological conditions associated with abnormal UA levels impact 8.74% of the U.S. population and cost $33.7 billion in related medical expenses annually.”

Drawbacks of traditional uric acid monitoring

Wenzhuo Wu, the Ravi and Eleanor Talwar Rising Star Associate Professor of Industrial Engineering at Purdue University, at right, and doctoral student Jing Jiang work on a new noninvasive, wearable sensor that monitors levels of uric acid in human sweat. (Purdue Research Foundation photo/Jennifer Mayberry)

Wu explained there are well-established clinical measures of UA levels in blood used for metabolism and nutrition control. He also said they have drawbacks.

“The intrusive nature of collecting blood and the delay between sample collection and analysis are major hindrances, especially to personalized remote treatments like flare-up prevention and just-in-time nutrition control,” Wu said. “Monitoring UA levels in sweat samples has the advantages of being noninvasive and offering real-time results.”

Wu said current wearable sensors to measure UA levels in sweat have several limitations, including complicated fabrication processes, sophisticated instruments, expensive raw materials and unsatisfactory performance.

“The UA levels in the sweat of a healthy human are significantly lower than the UA levels in blood. This means sensors must have superior limits of detection,” Wu said. “Additionally, continuous monitoring requires intimate contact between the UA sensor and human skin, which imposes further requirements for the wearability of the sensors.”

Purdue EPICS sensors

Wu and his team have developed EPICS, which are flexible and noninvasive sensors that monitor uric acid in human sweat. They created the sensors from zinc oxide, a nontoxic, biocompatible and electrochemically active material.

“Our design allows the possibility of noninvasive monitoring of UA with a boosted performance by otherwise wasted mechanical energy, such as that from the human body,” Wu said. “The fundamental piezo-electrocatalytic principles can also be extended to other piezoelectric materials with catalytic properties for high-performance sensing in the biomedical, pharmaceutical and agricultural areas.”

Wu and his team have tested EPICS at Purdue University’s Flex Lab since the summer of 2021. He said the results show EPICS outperformed traditional UA sensors in the tests.

“We demonstrated that the EPICS devices achieve a fourfold enhancement in the UA sensing performance with a small compressive strain boosted by piezo-electrocatalysis during the electrochemical oxidation of UA on the surfaces of mechanically deformed zinc oxide nanorods,” Wu said. “The EPICS devices exhibited a superior sensitivity and limit of detection outperforming all reported flexible electrochemical UA sensors.”

Wu and the research team will conduct additional testing to validate the on-body sensing of EPICS and to evaluate the sensor’s performance over time.

Wu disclosed the sensor innovation to the Purdue Innovates Office of Technology Commercialization, which applied for a patent to protect the intellectual property. Industry partners interested in developing and commercializing the innovation should contact Matt Halladay, business development manager II at the Office of Technology Commercialization, mrhalladay@prf.org, about track code 70183.

About Purdue University

Purdue University is a public research institution with excellence at scale. Ranked among top 10 public universities and with two colleges in the top 4 in the United States, Purdue discovers and disseminates knowledge with a quality and at a scale second to none. More than 105,000 students study at Purdue across modalities and locations, with 50,000 in person on the West Lafayette campus. Committed to affordability and accessibility, Purdue’s main campus has frozen tuition 12 years in a row. See how Purdue never stops in the persistent pursuit of the next giant leap, including its first comprehensive urban campus in Indianapolis, the new Mitchell E. Daniels, Jr. School of Business, and Purdue Computes, at https://www.purdue.edu/president/strategic-initiatives.

About Purdue Innovates Office of Technology Commercialization

The Purdue Innovates Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university’s academic activities through commercializing, licensing and protecting Purdue intellectual property. In fiscal year 2022, the office reported 157 deals finalized with 237 technologies signed, 379 disclosures received and 169 issued U.S. patents. The office is managed by the Purdue Research Foundation, which received the 2019 Innovation and Economic Prosperity Universities Award for Place from the Association of Public and Land-grant Universities. In 2020, IPWatchdog Institute ranked Purdue third nationally in startup creation and in the top 20 for patents. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University. Contact otcip@prf.org for more information.

Writer/Media contact: Steve Martin, sgmartin@prf.org
Source: Wenzhuo Wu, wu966@purdue.edu

Research News

Purdue student standing in front of 3D-printed scramjet

PARI students successfully test full-scale, additively manufactured scramjet

January 9, 2025

Edward Delp and Arun Ghosh

National Academy of Inventors names two Purdue faculty as 2024 fellows

December 12, 2024

Nicole Balog and Nikhilesh Chawla look at a stingless bee honeycomb sample.

Australian honeycombs abuzz with possibilities for sustainable additive manufacturing

December 12, 2024

Purdue professor Briony Horgan stands in front of a photo of the Mars Perseverance rover.

Purdue scientist expecting new world to reveal itself to Mars rover  

December 3, 2024