Name:

Date:

Understanding, Making, and Using Buffers: Part I. Investigating Buffers Virtual Lab

Question 1: How does the concentration of buffer components in a solution affect the change in pH when a strong acid or strong base is added?

1. Identify the variables based on the scientific question above.

Independent (Manipulated) Variable	
Dependent (Responding) Variable	

- 2. Fill in the pH values from question 1 in the independent variable (IV) column.
- 3. To collect each data point, watch the corresponding video on the Part I: Investigating Buffers webpage.
- Calculate the change in pH (ΔpH) by subtracting the original pH (IV column) from the final measured pH for each row in the DV section of the data table.

$$\Delta pH$$
 = final pH – initial pH

Data Table 1 - Investigating changes in pH based on concentrations of buffer components.

Buffer	IV- Concentration of buffer components	DV- Change in pH when a strong acid or base is added			
Components		With 0.001 mol HCI		With 0.001 mol NaOH	
		рН	∆рН	рН	∆рН
HNO ₃ + NaNO ₃	0.1 M pH =				
	1.0 M pH =				
$\begin{array}{c} HC_2H_3O_2 +\\ NaC_2H_3O_2 \end{array}$	0.1 M pH =				
	1.0 M pH =				
NH₄CI + NH₃	0.1 M pH =				
	1.0 M pH =				

Analysis 1: Describe the relationship between the concentration of the buffer components and the change in pH when an acid or base is added.

Name:

Date:

Period:

Question 2: How does the amount of the strong acid or strong base being added affect the change in pH of a buffer solution?

5. Identify the variables based on the scientific question above.

Independent (Manipulated) Variable	
Dependent (Responding) Variable	

- 6. Fill in the pH values for the 0.1 M solutions in the first column under "Buffer Components" (See Data Table 1).
- 7. To collect each data point, watch the corresponding video on the Part I: Investigating Buffers webpage.
- 8. Calculate the change in pH (Δ pH) by subtracting the original pH of the Buffer Components from the final measured pH for each row in the data table.

 $\Delta pH = final pH - initial pH$

Data Table 2: Investigating changes in pH based on amount of added acid/base.

Buffer	IV- Amount of strong acid or strong base being added to buffer	DV- Change in pH of the buffer solution			
Components		HCI		NaOH	
		рН	∆рН	рН	∆рН
0.1 M HNO ₃ + 0.1 M NaNO ₃	0.001 mol				
pH =	0.010 mol				
0.1 M HC ₂ H ₃ O ₂ + 0.1 M	0.001 mol				
рН =	0.010 mol				
0.1 M NH₄CI + 0.1 M NH₃	0.001 mol				
рН =	0.010 mol				

Analysis 2: Describe what happened to the change in pH when different amounts of strong acid or strong base were added to the solutions.