Name:

Date:

Period:

Part III: Determining Buffer Components for a Desired pH

Buffer Challenge: Determine which buffer components from the list should be used for each scenario described below.

Step 1: Use the K_a values to calculate the pH. (HINT: Use the equation from the notes.)

Step 2: Choose the appropriate acid for each scenario based on the calculated pH values. Then match the conjugate base to the chosen acid.

Step 3: Use stoichiometry to calculate how many grams of salt need to be added to 100 mL of the aqueous solution of its conjugate to create a 1:1 ratio.

Table 1. Burler Components for Creating Burler Solutions				
Acids	Bases			
0.10 M acetic acid (CH ₃ COOH) > $K_a = 1.8 \times 10^{-5}$	0.10 M ammonia (NH₃)			
Ammonium chloride (NH ₄ Cl) \succ K _a of NH ₄ ⁺ = 5.7 x 10 ⁻¹⁰	Sodium dihydrogen citrate (NaH ₂ C ₆ H ₅ O ₇)			
0.10 M citric acid ($H_3C_6H_5O_7$) \succ K _a = 7.1 x 10 ⁻⁴	Sodium acetate (NaCH₃COO)			
0.10 M sodium dihydrogen phosphate (NaH₂PO₄) ➤ K _a of H₂PO₄ ⁻ = 6.3 x 10 ⁻⁸	Sodium hydrogen phosphate (Na ₂ HPO ₄)			

Table 1: Buffer Components for Creating Buffer Solutions

pH of acetic acid solution:

pH of ammonium chloride: _____

pH of citric acid solution: _____

pH of sodium dihydrogen phosphate solution:

Name:

Date:

Period:

Scenario 1: Prepare a buffer for an antibiological agent which is designed for use in the human body. This buffer should have a pH of 7.2 ± 0.5 with the ability to stay within one pH unit of this target when strong acid or base is added.

Mass of salt to be added =

Scenario 2: Prepare a buffer for an antifungal agent which is designed for use against a fungus that attacks food sources that grow in *acidic* soil. This buffer should have a pH of 4.7 ± 0.5 with the ability to stay within one pH unit of this target when strong acid or base is added.

Acid:			Base:		
100 mL	- ×	— × ——	×	x	— =

Mass of salt to be added =

Scenario 3: Prepare a buffer for an antifungal agent which is designed for use against a fungus that attacks food sources in *basic* soil. This buffer should have a pH of 9.2 ± 0.5 with the ability to stay within one pH unit of this target when strong acid or base is added.

Acid:	Base:	
$\frac{100 \ mL}{1} \times$		=
Mass of salt to be added =		

Scenario 4: Prepare a buffer for an antiviral agent which is designed for use against a strain of virus that attacks drug-producing bacteria that survive and grow in acidic environments. This buffer should have a pH of 3.1 ± 0.5 with the ability to stay within one pH unit of this target when strong acid or base is added.

Acid: _____ Base: _____

Mass of salt to be added =