27

PURDUE

UNIVERSITY

Department of Computer Science

Rubric for Final Project: Space Adventure Game

Criteria

Game Setup

Game Objects

Player
Movement

Collision
Detection

Scoring System

Creativity and

Design

Documentation
and Code
Quality

Excellent (4)

Pygame
initialized,
window setup,
background color
filled correctly.

Classes defined
and objects
drawn correctly

with no errors.

Smooth and
responsive
movement
implemented
correctly.

Collision
detection
accurate and
reliable.

Scoring system
fully functional
and displayed

correctly.

Game includes
creative elements
and design,
making it
engaging.

Code is well-
documented and
clean.

Good (3)

Pygame initialized,
window setup, minor
issues with

background color.

Classes defined with
minor errors,
objects drawn

mostly correctly.

Movement
implemented with

minor issues.

Collision detection
mostly accurate

with minor issues.

Scoring system
functional with
minor display

issues.

Game includes
some creative
elements, design is

engaging.

Code is mostly clean
with some
docw.‘l' tation.

Satisfactory (2)

Pygame initialized
with some errors,
window setup but

incomplete.

Classes defined but
incomplete, objects

not drawn correctly.

Movement
implemented but
not smooth or
responsive.

Collision detection
implemented but
not reliable.

Scoring system
implemented but

not fully functional.

Game includes
basic elements,
design is simple.

Code is somewhat
clean, lacks
documentation.

Needs
Improvement (1)

Pygame not
properly
initialized,
window setup
incorrect.

Classes not
properly defined,
objects missing

or incorrect.

Movement not
properly
implemented or
missing.

Collision
detection missing

or inaccurate.

Scoring system
missing or

incorrect.

Game lacks
creative
elements, design

is very basic.

Code is messy
and poorly
documented.

Final Game Code

import pygame

from pygame.locals import *
import math

import os

import random

Set SDL audio driver to avoid driver error in console
os.environ['SDL AUDIODRIVER'] = 'dsp'

Initialize Pygame

pygame.init ()

screen = pygame.display.set mode((640, 480))
pygame.display.set caption ("Space Adventure")
clock = pygame.time.Clock()

Colors

BLACK = (0, 0, 0)
GREEN = (0, 255, 0)
YELLOW = (255, 255, 0)
RED = (255, 0, 0)
WHITE = (255, 255, 255)

Spaceship Class
class Spaceship:
def init (self, position):
self.position = position
self.color = GREEN

def draw(self, screen):
pygame.draw.rect (screen, self.color, (*self.position, 40, 20))

def move (self, dx, dy):
self.position[0] += dx
self.position[l] += dy

Star and Asteroid Classes
class Star:
def init (self, position):
self.position = position
self.color = YELLOW

def draw(self, screen):
pygame.draw.circle (screen, self.color, self.position, 8)

class Asteroid:
def init (self, position):
self.position = position
self.color = RED

def draw(self, screen):
pygame.draw.circle (screen, self.color, self.position, 15)

Function to detect collision
def detect collision(objl, obj2):
dx = objl.position[0] - obj2.position[0]
dy = objl.position[l] - obj2.position[1]
distance = math.sqrt (dx**2 + dy**2)
return distance < 20 # Adjust based on object sizes

Create game objects

Page 2 of 3

spaceship = Spaceship([300, 400])

stars = [Star([random.randint (0, 640), random.randint (0, 480)]) for _ in range(5)]
asteroids = [Asteroid([random.randint (0, 640), random.randint (0, 480)]) for in
range (3)]

Initialize score
score = 0

Main game loop
running = True
while running:
for event in pygame.event.get () :
if event.type == QUIT:
running = False

keys = pygame.key.get pressed()

if keys[K LEFT] and spaceship.position[0] > O:
spaceship.move (-5, 0)

if keys[K RIGHT] and spaceship.position[0] < 600:
spaceship.move (5, 0)

if keys[K UP] and spaceship.position[l] > 0:
spaceship.move (0, -5)

if keys[K DOWN] and spaceship.position[l] < 460:
spaceship.move (0, 5)

Check for collisions with stars
for star in stars[:]:
if detect collision(spaceship, star):
stars.remove (star)
score += 10
print (f"Collected a star! Score: {score}")

Check for collisions with asteroids
for asteroid in asteroids:
if detect collision(spaceship, asteroid):
score —-= 5
print (f"Hit an asteroid! Score: {score}")

screen.fill (BLACK)

spaceship.draw (screen)

for star in stars:
star.draw (screen)

for asteroid in asteroids:
asteroid.draw (screen)

Display the score

font = pygame.font.Font (None, 36)

score text = font.render (f"Score: {score}", True, WHITE)
screen.blit (score text, (10, 10))

pygame.display.flip()
clock.tick (30)

pygame.quit ()

Page 3 of 3

