Physics-Informed Machine Learning to Improve the Predictability of Extreme Weather Events
DUIRI - Discovery Undergraduate Interdisciplinary Research Internship
Summer 2025
Accepted
deep learning, artificial intelligence, atmospheric sciences, extreme weather
Atmospheric blocking events and 'Bomb Cyclones' are an important contributor to high impact extreme weather events. Both these weather extremes lead to heat waves, cold spells, droughts, and heavy precipitation episodes, which have dire consequences for the public health, economy, and ecosystem. For example, the blocking-induced heat waves of 2003 in Europe led to tens of thousands of human casualties and tens of billions of dollars of financial damage.
Traditionally, prediction of extreme weather events is based on direct numerical simulation of regional or global atmospheric models, which are expensive to conduct and involve a large number of tunable parameters. However, with the rapid rise of data science and machine learning in recent years, this proposed work will apply convolutional neural network to an idealized atmospheric model to conduct predictability analysis of extreme weather events within this model. With this proposed machine-learning algorithm, our project will provide a robust forecast of heat waves and atmospheric blocking with a lead-time of a few weeks. With more frequent record-breaking heat waves in the future, such a prediction will offer a crucial period of time (a few weeks) for our society to take proper preparedness steps to protect our vulnerable citizens.
Lei Wang
This project is based on developing and verifying the machine learning algorithm for detecting extreme weather events in an idealized model. We will use Purdue’s supercomputer Bell to conduct the simulations. The undergraduate student will play an active and important role in running the idealized model, and participate in developing the algorithms. As an important component of climate preparedness, the proposed work aims to develop a physics-informed machine learning framework to improve predictability of extreme weather events.
Closely advised by Prof. Wang, the student will conduct numerical simulations of an idealized and very simple climate model, and use python-based machine learning tools to predict extreme weather events within the model. Prof. Wang will provide weekly tutorial sessions to teach key techniques along with interactive hands-on sessions. The students will get access to the big datasets on Purdue’s Data Depot, analyze and visualize data of an idealized atmospheric model. The student will use convolutional neural networks (CNNs) to train and assess a Machine-Learning model. The student will further use feature tracking algorithm to backward identify the physical structure in the atmosphere that is responsible for the onset of extreme weather events.
http://leiw.org
machine learning (e.g., CNN), python
0
40 (estimated)